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Figure 1: The discovery of Man-in-the-Middle behavior in network traffic meta-data using selection-based attribute ranking.

ABSTRACT

For the protection of critical infrastructures against complex virus
attacks, automated network traffic analysis and deep packet inspec-
tion are unavoidable. However, even with the use of network in-
trusion detection systems, the number of alerts is still too large to
analyze manually. In addition, the discovery of domain-specific
multi stage viruses (e.g., Advanced Persistent Threats) are typically
not captured by a single alert. The result is that security experts are
overloaded with low-level technical alerts where they must look for
the presence of an APT. In this paper we propose an alert-oriented
visual analytics approach for the exploration of network traffic con-
tent in multiple contexts. In our approach CoNTA (Contextual anal-
ysis of Network Traffic Alerts), experts are supported to discover
threats in large alert collections through interactive exploration us-
ing selections and attributes of interest. Tight integration between
machine learning and visualization enables experts to quickly drill
down into the alert collection and report false alerts back to the in-
trusion detection system. Finally, we show the effectiveness of the
approach by applying it on real world and artificial data sets.

Keywords: Anomaly detection, network traffic analysis, multi-
variate analysis, streaming data, interaction, parse data analysis.

Index Terms: C.2.0 [Computer Communication Networks]:
General—Security and Protection; H.5.2 [Information Interfaces
and Presentation]: User Interfaces; I.3.8 [Computer Graphics]: Ap-
plications

1 INTRODUCTION

The aim of network forensics is to discover malicious activity inside
logs of network traffic. Especially for critical infrastructures, such
as power plants, the presence of malicious activity can lead to the
malfunction or even destruction of the underlying system. Foren-
sics can no longer limit their analysis to high-level message proper-
ties (e.g., length, destination) due to the existence of Advanced Per-
sistent Threats (APTs) [28]. These complex viruses are designed to
hide their malicious activity inside the content of messages thereby
making them invisible to current flow-based techniques [16].
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Since manual inspection of network traffic is impossible due to
size and complexity, forensic experts use network Intrusion Detec-
tion Systems (IDS) to assist them in finding areas of interest. Al-
though these systems automate the analysis of network traffic, the
number of (false) alerts is often too large to analyze one by one.
Given that alerts in message content analysis can arise at any combi-
nation of hundreds of message attributes, the number of alert types
greatly varies. In this paper we propose an exploration method that
enables experts to gain insight in traffic content by visually explor-
ing and correlating network traffic alerts defined at message-level.

Similar to Livnat et al. [17], we believe that an alert as a result
of a complex attack does not stand on its own. The true sever-
ity of an alert can not be determined by solely inspecting its struc-
tural properties such as what, when, or where that alert has occurred
in the network. Instead, we are interested whether the occurrence
of an alert was implicitly related to (a collection of) messages or
alerts that were sent in the past. For this we need to be able to
inspect message collections for correlations between message at-
tributes (e.g., inter-attribute analysis) and inspect trends in these
attributes over periods of time, (e.g., intra-attribute analysis). To
enable the simultaneous exploration of message-level phenomena
(e.g., field misuse) and traffic-level phenomena (e.g., bursts), our
exploration method focuses on a tight interaction scheme between
well-established visualization and machine learning techniques. In
summary, our main contributions are:

• a visual analytics approach to network forensics, enabling ex-
perts to:

– explore and analyze network traffic on both attribute
and temporal level using alerts as a ground truth, and

– identify and confirm (visual) correlations between net-
work traffic messages and alerts using selection-based
relevance metrics and conversation analysis.

• a data-driven coupling between machine learning and visual-
ization for the detection and refinement of network alerts.

The paper is structured as follows. First, related work is dis-
cussed in Section 2. Next, the scope and approach for traffic analy-
sis are discussed in Sections 3 and 4 respectively. Section 5 presents
an overview of the system and shows how the exploration method
is applied. Sections 6 and 7 describe two example explorations on
real world and artificial data sets and discuss the limitations of the
approach. Conclusions and future work are presented in Section 8.
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2 RELATED WORK

A wide range of visualization techniques have been proposed over
the years to explore network traffic. We focus here on the ap-
proaches that use alerts as a central element. For a broader overview
we refer to the surveys of Shiravi et al. [27] and Attipoe et al. [3].

2.1 Alert Visualization
Alert visualizations are designed to gain insight into large alert col-
lections, generated by detection systems such as Snort [4] and Bro
[20]. Some examples of well-known visualizations are:

• IDS rainstorm [1] visualizes the severity of Snort intrusion de-
tection alerts by creating a pixel visualization of the IP address
space where the alerts reside.

• Snortview [13] visualizes Snort alerts over time according to
their type, source, and destination. Glyphs and coloring are
used to effectively represent false positives.

• Avisa [26] uses a radial display to visualize the relationship
between alert types and hosts. Alerts are visualized as B-
Splines from alert type to the corresponding host clustered
using edge bundling techniques.

Such methods construct an overview of alert collections by visually
encoding their severity, source, and type in a single image. Since
these methods only focus on alerts as their data source, their knowl-
edge about the normal traffic is limited, making root-cause analysis
on this data very difficult. In addition, the loose coupling between
IDS and visualization does not enable experts to report false alerts
back to the IDS. We believe that a human in the loop approach [24]
is vital for quickly gaining insight and reducing the (false) alerts.

Methods that do incorporate normal traffic and interactive ma-
chine learning in their exploration process are PixelCarpet [15] and
SNAPS [5]. PixelCarpet uses a pixel visualization where log en-
tries are represented as a stack of pixels. The brightness of a pixel
is used to denote the frequency of log record values. Tight coupling
between machine learning and visualization is achieved by enabling
the user to remove records from the data set and adapt the model
accordingly. Although the technique assists experts in identifying
areas of interest through interactive machine learning, their method
does not scale for hundreds of attributes. The SNAPS system uses a
pixel visualization to display the full structure of a network message
as a horizontal line of pixels. Alerts inside messages are highlighted
on a per-attribute basis and can be refined using machine learning.
Unfortunately, since the approach is focused on monitoring traffic
it can only inspect small fractions of traffic at the same time. This
makes it hard to detect attacks over larger periods in time.

2.2 Exploration
In order to understand the severity and cause of an alert, inves-
tigations are needed. Zhang et al. [32] already showed that in
flow-based network investigations interaction and multiple views
play an important role. In our CoNTA approach, we show that
this paradigm can be extended with machine learning and relevance
metrics to enable traffic content analysis for hundreds of attributes.

Two systems closest to our technique with respect to exploration
are VisAlert [17] and Ocelot [2]. VisAlert discovers correlation be-
tween network IDS alerts by visually mapping alerts according to
three attributes, namely what, when, and where. They use a radial
layout and semantic zooming to find overlap between alerts at var-
ious levels of detail over time. Ocelot improves decision support
for cyber analysts in computer networks by hierarchically grouping
host machines according to various attributes. Filtering is used to
isolate affected machines from healthy parts of the network.

VizAlert and Ocelot analyze alerts at the level of a host, rather
than at the level of a message. Since host-based alerts only con-
vey information about the network-level constraints that have been
violated (e.g., policy violations, access attempts, etc.), finding the

messages and values that were responsible for these alerts is diffi-
cult. In addition, since both methods do not consider the normal
events in their decision support analysis, context is lost making it
even more difficult to find the root cause of an alert. Finally, both
methods do not enable experts to inspect the sequential occurrence
of one or more alerts. Kot et al. [14] already indicate that APTs can
be the result of a sequence of malicious actions. CoNTA enables
experts to visually inspect traffic sequences by inspecting message
attributes at the level of network conversations. Interaction enables
experts to store and inspect search results in different contexts.

In summary, current methodologies focus on the visualization of
large alert collections rather than trying to investigate them through
iterative refinement and correlation discovery. The methods that
try to discover correlations between alerts and traffic events, either
cannot report their findings back to the IDS or limit their analysis
to only a few flow-based attributes. Furthermore, their inability to
inspect sequential patterns and conversations in normal traffic does
not give experts a baseline for determining the severity of an alert.

3 PROBLEM STATEMENT

The exploration and analysis of network traffic is still a challenge.
Even for relatively small networks consisting of tens of nodes, the
number of messages per day can easily run in the order of thou-
sands. In addition, every message stores multivariate data depend-
ing on its type and purpose. In order to protect environments from
APTs, network traffic content has to be analyzed. APTs tend to
work in three stages, namely infiltration, expansion and exploita-
tion. Infiltration is typically achieved through social engineering
[29]. During expansion the threat will try to locate the target ma-
chine. The exploitation phase is used to sabotage the system by
relying on system vulnerabilities. Since APTs exploit domain-
specific properties of the network, infiltration is nearly impossible
to prevent. We can however detect signs of the other phases by an-
alyzing unencrypted network traffic between hosts for anomalies.

We focus on potential APTs against assets in industrial con-
trol systems and office networks, since the modification of assets
(e.g., hardware and files) in these networks can have severe conse-
quences. We can identify two types of threats against these assets,
namely system-related versus process-related threats [10]. System-
related threats create malicious traffic at network-level and are typ-
ically caused by traditional attacks such as buffer overflows and
data tampering, possibly assisted by port scans or complex Man In
The Middle behavior (MITM) [18]. Process-related threats gener-
ate traffic that is legitimate at network-level, but malicious at the
level of assets. Examples are raising the temperature of a heater to
a 1000 degrees or unauthorized file access. System-related threats
are often used as a first step in the realization of a process-related
threat. Process-related attacks are typically the result of an APT.

For the detection of process-related threats, we analyzed
application-level protocols SMB2 and ModBus. The Modbus pro-
tocol is designed to transfer low-level hardware commands in in-
dustrial control systems, whereas SMB2 is used for file manage-
ment in office networks. System-related attacks can be detected by
analyzing flow-based protocols ETH, TCP, and IP.

3.1 Data acquisition
CoNTA applies semantic network traffic analysis by enriching raw
network packets with protocol semantics using WireShark [6]. The
result is a multivariate table where rows correspond to messages and
columns to attributes. Protocol attributes can represent numerical
ranges (e.g., port numbers), strings (e.g., ip addresses), or boolean
values (e.g., flag data). Depending on the type of message, specific
attributes are present. Since the number of possible protocol at-
tributes outnumbers the number of possible attributes in a message
(order of 100s vs. 10s), the resulting table is quite sparse (Figure
2).
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Figure 2: 1) Serialization of PCAP traffic with WireShark. 2) Machine learning produces scores per attribute whether these are suspicious or not.

For the classification of anomalous behavior in the traffic, we
aim for an anomaly detection approach, since APT activity is typi-
cally not captured by existing signature based approaches [8]. The
resulting alerts are used as a basis for the analysis of network traf-
fic. Without loss of generality, we can model an alert as a weighted
vector of message values, where the weights describe the extent to
which the IDS considers that value malicious. More formally, let D
be our multivariate table with N messages and M attributes.

D = {mi j, i = 1, . . . ,N; j = 1, . . . ,M} (1)

where mi j represents the message value of message i at attribute A j.
Furthermore, let S represent a table of alert data such that:

S = {si j ∈ [0,1], i = 1, . . . ,N; j = 1, . . . ,M} (2)

where si j represents an IDS alert score for value mi j. A message
mi is considered malicious if and only if:

∃ j[ j = 1, . . . ,M|si j > τ] (3)

where τ is a decision threshold that for the sake of simplicity is
set to 0.95. This model enables us to define classifier refinement
techniques that are independent of the underlying machine learning
(see Section 4.6). Classifiers that do not directly support probabil-
ity based classification results can obtain these through posterior
probability estimation [12].

Network messages are classified using a probabilistic based IDS
for industrial control systems as defined by Yüksel et al. [31]. This
classification technique maintains histograms on a per-attribute ba-
sis and uses dynamic thresholds to determine the severity of an
alert. For the detection of contextual anomalies involving combina-
tions of values, they derive new attributes using domain knowledge
and Pearson’s Chi-Square test [21] for statistical independence.

4 CONTA
The size and complexity of network traffic data makes digital net-
work forensics a challenging task. Especially when trying to find
the root cause of high-level anomalies, the lack of traffic content
can severely limit the investigation. To enable experts in discov-
ering anomalies in this data, we aim for a scalable and interactive
visual analytics approach that is coherent with the workflow of tra-
ditional digital forensics and cyber defence models [7, 33].

We tackle scalability by summarizing network traffic in a con-
figurable table, enabling experts to inspect trends and outliers from
various perspectives by splitting the data over multiple rows and
columns. Detailed exploration is achieved by storing message se-
lections as contexts and inspecting them with respect to these con-
texts. To handle the large amount of attributes in the data, attributes
are represented as scented widgets [30] that can be ranked and fil-
tered according to characteristics in selected message collections.
Large alert collections are tackled by reporting false classification
results back to machine learning and enabling experts to analyze
alerts from the viewpoint of both messages and attributes.

4.1 Exploration process
Figure 3 shows a schematic overview of the exploration process.
Similar to Pollitt’s model [22], our approach considers three phases,

Figure 3: The CoNTA workflow model for network traffic exploration.
Experts use alerts and a traffic overview to find areas of interest
over time in up to three attributes. Selected areas are refined by
(de)selecting messages according to suggested attributes of inter-
est. Identification of the underlying problem is achieved by splitting
the traffic according to profiles and testing the presence of message
values and sequential patterns in multiple contexts. New contexts
and attributes are obtained by saving selections of interests. Experts
can use this to keep track of their exploration process, compare se-
lections in different contexts, or report false alerts back to the IDS.

namely discovery, identification, and confirmation. In the discovery
phase, experts search the data for areas of interest using alerts as a
starting point. In order to determine when a particular subset of
alerts is of interest, experts need to find any form of similarity (e.g.,
originating from the same source, sharing the same attribute etc.)
between alerts. For this experts need to be able to:

• compare traffic between multiple entities to discover oultiers;

• locate trends and sequences in attributes over time; and

• inspect messages individually to determine their severity.

In CoNTA, experts start their analysis with an overview of the
traffic over time on any desired attribute of choice. Suggestions
for possible interesting attributes are provided in the attribute view
using selection-based ranking techniques (Section 4.5).

The identification phase tries to locate potential causes of the
selected data by splitting the traffic in one or more groups (also
referred to as profiles [19]) and inspect them in various contexts.
This involves creating hypotheses and verifying them by testing the
data for structural properties, such as when and who produced the
data and what data were accessed. The inspection of sequential
properties enables experts to find malicious message orderings in
conversations. This includes the detection of conflicts of interest
(e.g., approving your own file requests), and violations in opera-
tional integrity (e.g., closing the gas valve before lighting a fire).
Confirmation is the phase where conclusions are drawn from the
hypotheses. This either results in:

• storing selections into contexts for reuse in investigations;

• tagging traffic with new data to accelerate analysis; and/or

• reporting false alerts back to the machine learning by retrain-
ing the data on subsets of the traffic.

CoNTA uses four linked views to assist experts throughout the three
exploration phases. In the next sections we discuss the functionality
and design decisions for each view separately. For a demonstration
of the system in practice, we refer to the supplementary video 1.

1https://www.youtube.com/watch?v=yOXDZYKCKZ0
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Figure 4: Graphical user interface of the implemented prototype and components: a) Time table for the visual inspection of correlations between
3 attributes over time. Settings with respect to the type of cell visualization (i.e., heatmaps, line charts or pixel maps), axis scaling, and ordering
are set using controls in e). b) The context view enables experts to revisit their exploration process and visually compare selections. c) The
attribute view shows trends and patterns in selections on a per-attribute basis. Settings with respect to attribute ordering, binning, and classifier
settings can be adjusted using the controls surrounding the view. d) Temporal patterns in network conversations can be discovered in the
conversation view enabling the expert to inspect the possible presence of malicious messages sequences.

4.2 Time Table
When analyzing network traffic, the number of messages is typi-
cally larger than the number of available pixels on the screen. To
provide an overview of the traffic we use a table, where attributes
can be inspected over time by grouping the network traffic over at
most two attributes of choice. The main motivation for introducing
a table of small multiples over a large single is to assist analysts
in profiling, where they can inspect traffic with respect to certain
attribute values. This enables experts for instance to spot trends or
compare traffic over time on a per user or daily basis. For the anal-
ysis of the traffic as one large single, the axes of the table can be
set to None. Figure 5 shows a schematic overview of how the time
table can be configured. Since repeatedly printing the axis labels
for every table cell separately is redundant and can clutter the visu-
alization, a small legend is used instead to inform the expert about
the active axes and scaling (Figure 4a). For the detection of simi-
larities between one or more table cells, a third attribute of choice
can be visualized using color.

The table axes enable experts to analyze categorical and numer-
ical attributes by binning the traffic in non-overlapping intervals.
The axes inside each table cell can be used to inspect continuous
attributes, such as time or message length. Since time plays a key
role in network analysis, the cell’s X-axis is always set to time.

Experts can modify the bin sizes of the table and cell axes de-
pending on their task and available space. Small bin sizes are suit-
able for outlier detection at pixel-level, whereas larger bin sizes can
be used for the detection of temporal patterns over larger periods in
time. For the detection of patterns between bins, experts can sort
axis values by their frequency or rarity. If the number of bins in an
attribute becomes too large, experts can enable scroll bars by defin-
ing an upperbound on the number of visible bins. Predominating
bins can be shown or hidden using the control options (Figure 6a).

4.2.1 Table cells
Following from the problem statement, analysts need to be able to
compare traffic between profiles, inspect attributes over time, and

Figure 5: The time table visualizes continuous attribute Ai over time
by splitting the traffic over multiple cells using Ax and Ay.

inspect messages individually. Since every task requires a different
perspective, CoNTA supports three visualizations that can be used
in the table cells, namely heatmaps, line charts, or pixel maps. The
heatmap and line chart are designed to obtain an overview of at-
tributes over the entire traffic. Line charts can be used for inspect-
ing trends, whereas heatmaps enable experts to compare attribute
behavior over larger collections of profiles. For the inspection of
individual messages, experts can switch to a pixel map, where ev-
ery message is represented as a rectangle (Figure 1d). By default,
messages in the pixel map are colored according to their protocol.
Malicious messages are indicated by a red box. Experts can enlarge
the pixels through zooming to reveal a summary description of each
message. Alternatively, experts can hover over a message to inspect
their values by means of a popup (Figure 1e).

When selecting a numeric attribute A for the Y-axis of the table
cells, the height of every line chart point p is determined by taking
the average of all message values with attribute A in p. Attributes
#msg and #alerts are an exception to this rule, since they rep-
resent the number of (malicious) messages in each point in time.
The color of a heatmap cell is determined according to the chosen
colormap. Line charts can also be split based on this colormap to
gain insight in the value distribution of a particular attribute over
time. This results in a stacked line chart as depicted in Figure 1a.
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4.3 Context View
Experts can save selected messages of interest by assigning a name
to them and defining them as a new context. The context view main-
tains a history of all contexts the expert is interested in. When creat-
ing a new context, experts can create a new attribute separating the
selected messages from the non-selected. This attribute is added
to the data and can be used for further analysis. This enables ex-
perts to tag the data with more domain-specific information during
exploration.

For every context the number of messages and malicious mes-
sages is displayed. To stay aware of the size of the context, gray
and red histograms are used to show the fraction of messages and
alerts that are contained in the context with respect to the entire data
set. The hierarchy in the view shows the ordering in which the se-
lections were created. Context c is a child of parent context d if
and only if c was created when the expert was exploring d. This
relationship implies that the messages contained in a child context
are always a subset of the messages in the parent.

4.3.1 Multi-context
One danger of drilling down in the data, is that overview can be
easily lost. Eventually, the fraction of interesting data can become
so small that any (visual) significant difference can be misleading
due to bad scaling [11]. In CoNTA, experts are enabled to show
one context c with respect to an ancestor. The result is that the
ancestor context is added transparent in the background of c (Figure
4a, c, and d). This enables experts to see any trends and outliers
that were currently not incorporated in the current context without
losing overview.

We use glyphs in front of the contexts to show when multi-
context is enabled. The filled inner circle represents the context
of interest (in foreground), whereas the context with the filled outer
circle is only visible in the background. Figure 4b shows how these
glyphs are applied. Experts can enable multi-context by selecting
an ancestor context while pressing Alt. To preserve the parent
child relation in the context view, experts cannot refine their selec-
tion using the messages in the background context.

4.4 Conversation view
For the inspection of sequential patterns in conversations, we enable
experts to inspect message attributes using a node-link diagram. Let
A represent the attribute of interest. The graph is constructed by
creating a node for every value in A and there is an edge (v1,v2) if
and only if a message with v1 ∈ A is followed by a message with
v2 ∈ A in current context c. The thickness of the edges represents
the frequency in which values follow each other. Since the resulting
graph greatly depends on the chosen attribute and context, we use
the general-purpose Dot [9] algorithm for the layout.

Note that network traffic consists of multiple conversations run-
ning in parallel. Since the order in which conversations are inter-
leaved in the traffic does not have any meaning, by default only se-
quential patterns within the conversations are being considered. For
TCP traffic, a conversation (also known as a session) is defined as
the traffic between two IP addresses between two port numbers. In
case of numerical attributes, values are binned to reduce the number
of nodes in the graph. Experts can prevent nodes with a high degree
from occluding the visualization by hiding them using a slider.

Selecting a node v in the conversation view will highlight all
messages in the traffic with value v. Selecting an edge (v1,v2) se-
lects all message pairs in the conversations where v1 is indirectly
followed by v2. A visualization of the network topology can be
obtained by creating a graph of all IP or MAC addresses in the net-
work. In contrast to other attributes, both source and destination ad-
dresses should be taken into account when constructing this graph.
Experts can use this graph to filter the traffic on entire conversations
and hosts.

Figure 6: a) Options to adjust axis ordering and scaling. b) Overview
attribute widget. Projection settings are visible in the classifier tab.

4.5 Attribute view
The attribute view shows an overview of all attributes in the traffic
using scented widgets. Every attribute is represented as a histogram
showing the value distribution of that attribute. The histogram is
interactive and can be used to select and deselect messages with
specific attribute values. The span slider below every histogram is
used to enforce selections within specific value ranges. Time table
axes can be set to a particular attribute through a context-menu. The
number of bins in a histogram depends on the attribute’s distribu-
tion. For categorical attributes, there is a bin for every value in that
attribute. If the number of categorical values exceeds 20, a miscel-
laneous bin is introduced to represent the remaining values instead.
By default, categorical bins are sorted by their frequency.

For numerical attributes, the number of bins of the histogram are
computed using Scott’s rule [25]. Experts can modify this number
to gain more insight in the outliers of the attribute or to determine
the granularity in which experts can interact with the histogram.

Histograms are split into two columns. The left column rep-
resents the value distribution of the attributes according to all the
traffic in the current context. The right column shows the value
distribution of the same attribute only considering malicious traffic.
The separation enables experts to compare characteristics of mali-
cious messages with the rest of the traffic. In addition, the selection
of bins in the right histogram enables experts to search for mali-
cious messages with certain values. More about this in Section 5.

4.5.1 Attribute ranking
Since traffic data can consist of hundreds of attributes, inspecting
every attribute manually is impractical. Instead, experts can find
interesting attributes by sorting them according to various metrics:

• Alphabetical sorts the attributes by name.
• Most Alerts sorts attributes by counting the number of times

a particular attribute was considered malicious in the current
selection.

• Relevance sorts attributes by computing the information gain
[23] for each attribute with respect to the current selected mes-
sages. Attributes score high if they can separate selected mes-
sages from non-selected messages at best.

Experts can reapply the metrics on specific subsets of attributes
by filtering them by name using a textual interface. This is in par-
ticular useful when experts are only interested in relationships be-
tween attributes within for instance the same protocol.

4.6 Classifier intergration
False positive rates of network IDSs are still high. To tackle this is-
sue, we enable experts to optimize the underlying classifier through
refinement. Since machine learning techniques in IDSs widely vary,
we aim for a data-driven approach rather than a classifier-dependent
one. In our approach, we support four operations:

• filtering;
• projection;
• binning; and
• self-training [34].
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Experts can refine classifier scores by training the IDS on specific
subsets of the traffic. With filtering, only messages with values
that fit in the specified ranges are included during classification.
Projection determines which set of attributes should be taken into
account during classification. Projection can be used to exclude
attributes that are sensitive to false positives (e.g., identifiers).

Yüksel et al. already showed that false positive rates in numeric
attributes can be improved by reducing the granularity of the at-
tribute’s value distribution through binning [31]. Especially when
dealing with values whose alert scores are close to the decision
boundary, decreasing the granularity of the distribution can prevent
these alerts from happening. Self-training enables experts to report
valid messages back to the classifier by labeling them as safe. In-
stead of ignoring these messages in future classifications, the mes-
sages are moved to the training set of the IDS. This enables the IDS
to prevent similar alerts in other parts of the data.

In CoNTA, experts can instantly apply filtering, selection, and
binning using the attribute view in Section 4.5. When switching to
the classifier settings, histograms are shown for every attribute in
the data set displaying the number of times attribute values were
considered malicious. The range slider of a histogram represents
the filtering settings, whereas the number of bins shown represents
the granularity setting of the classifier for that attribute. Experts can
exclude alerts from the projection using the controls in Figure 6b.
Self-training is achieved through selection and a context-menu.

5 INTERACTION

The views in CoNTA work at various levels of abstraction. The
line chart, heatmap, and histograms inspect patterns at traffic level,
whereas the pixel map and conversation view work at message
and conversation level respectively. For the investigation of alerts
in CoNTA, linking and interaction play a key role. To ensure
that brushing and linking is consistent and understandable over all
views, we decided to use messages as a central concept. Message-
oriented interaction across views enables experts to reason about
their selections as sets of messages. Additional messages can be se-
lected in different views by selecting visual elements while holding
the Ctrl key (e.g., set union). Deselecting elements will remove
the messages from the current selection (e.g., set difference).

To preserve consistency when creating a selection, every visual
element (i.e., heatmap cell, histogram bar, linechart series, and
graph node/edge) is filled with a green color proportional to the
fraction of the selected messages in that item (Figure 7). To en-
sure that the intensity of the item’s background color is preserved,
transparency is added to the selection color. Similarly, hovering the
mouse over an item will show the fraction of hovered items (that
were not already selected) as a translucent dark gray color on top of
the selection. This enables experts to see the impact of the new se-
lection before applying it. To prevent elements and selections from
getting visually too small to properly interact with them, the height
of every element and selection is set to a minimum of two pixels.

6 USE CASES

We tested the effectiveness of our method on one artificial and one
real world data set. The first data set represents the simulation of a
fully functional artificial water plant consisting of 5 hosts, 80,000
messages and 170 attributes. The data set was designed by an ex-
ternal security company that is specialized in the detection of ma-
licious activity in industrial control systems. To show the practical
existence and impact of APTs, they injected an APT to damage the
facility. The second data set is obtained by recording 3 days of in-
ternal SMB2 network traffic from a university for which there was
no ground truth known beforehand. The data set corresponds to
approximately 800,000 messages, 400 attributes, and was sent by
approximately 20 hosts. For a better experience of the interaction
and use cases in practice, we refer to the supplementary video.

Figure 7: Brushing and linking is applied accross all views in CoNTA.

6.1 Water plant

6.1.1 Discovery

We initially start exploring the data set by inspecting the number
of alerts in the network over time using a line chart. We select
the burst period between 16:55 and 17:10 PM in the line chart and
save the messages in a new context called “alert burst” (Figure 1a).
According to the topology of the network, most traffic was cre-
ated by three nodes: the water tank (. . .:80); the SCADA system
monitoring the plant (. . .:88); and a router in between (. . .:69)
(Figure 4d). Alerts that were caused by infrequent protocols in
frame.protocols are removed using projection (Figure 1b).
Alerts that involve rarely active hosts are removed by selecting
the infrequent bins in the right ip.src histogram of the attribute
viewer and reporting them back to the IDS. After selecting the new
context, we sort the attribute for most common alerts. The attribute
mbtcp.reg uint16 scores high indicating that many different
messages with strange register values were seen by the IDS. Our
eye was caught by the attribute mbtcp.group0 whose right his-
togram shows that there are 50 messages with alerts that have the
value duplicate IP (Figure 1e).

6.1.2 Identification

We select all alerts with the strange value by switching to the clas-
sifier interface using the right histogram in the attribute view (Fig-
ure 1c). Sorting the selection by relevance shows that most se-
lected messages were received by two MAC-addresses. We group
the traffic per MAC-address by setting the time table’s Y-axis to
eth.src. Switching to the pixel map shows that most alerts are
present at the water tank (Figure 1d). Coloring the messages by IP
source reveals that the router uses the same IP addresses as the other
nodes, suggesting the presence of man-in-the-middle activity. We
select the conversations between the three nodes using the edges
in the conversation view, filter the traffic by Modbus, and create a
new context for them for further investigation.

6.1.3 Confirmation

Now that we know that this router is suspicious, the next step
is to find out what the router is aiming for. We select all mali-
cious messages that were sent by the router using the right his-
togram eth.src in the attribute viewer. Filtering this view by
only Modbus fields and sorting the widgets by relevance reveals
that most alerts were caused when reading particular registers (Fig-
ure 4c). Since each register in the plant stores its own data, we
group the traffic per register by setting the time table X-axis to
mbtcp.ref num and table cell Y-axis to mbtcp.reg uint16.
Figure 4e now shows how register values sent by the water tank are
actually perceived by the SCADA system and vice versa. Register
1 shows the status of the tank’s valve, where the height of the regis-
ter value describes the extent to which the valve is open. Register 5
represents the overflow flag the tank raises when the water level ex-
ceeds a certain threshold. Note that the close valve commands that
are sent to the router are not forwarded to the tank. Further note
that the tank’s overflow flag is suppressed by the router. The result
is that the tank overflows while the SCADA system is unaware of
this situation. Finally, we select the All context in the background
to see in the conversation window that this router apparently also
has conversations with other hosts in the network (Figure 4d).
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Figure 8: a) Heatmap showing the number of alerts per IP address per hour. b) Conversation view on smb2.filenames to detect the presence
of strange access orderings. c) Attribute sorting on Most Alerts shows that selected alerts use the same smb2.group0.flags. d) Sorting
attributes by relevance after selecting messages with the same flags. e) Pixel map per IP colored by ip.src. f) Tabular view of alert selection.

6.2 University
Next, we show how sequences of messages can assist the expert
in investigating when and how files are accessed in the network.
We first create a new context only containing SMB2 messages with
file names by selecting all bins in the left histogram of the attribute
smb2.filesource. Since the number of hosts in the network is
significantly larger compared to the previous data set, we start ex-
ploration by creating a heatmap showing the number of messages
per IP address (Figure 8a). IP addresses in the subnets *.*.4.*,
*.*.5.*, and *.*.71.* generate traffic over day and night.
Switching to the pixel map and coloring the pixels according to
their SMB2 command, shows that these addresses are servers only
sending response messages. After sorting the Y-axis by frequency
and coloring the heatmap by number of alerts per hour shows that
on December 10 06:00-07:00 AM IP addresses 192.168.4.34
and 192.168.70.38 generated more alerts with respect to the
other time slots. Selecting both heatmap cells shows in the conver-
sation view that both hosts were communicating with each other.

We inspect the file access behavior of the hosts by creating a
node link diagram of all the files that were accessed in the net-
work. Frequent files that are accessed by everyone (e.g., the file
spoolss whenever a document is printed) are hidden using the
visibility slider. Besides the strange ? in the graph, we see that
a Login file is indirectly followed by a Logoff. Selecting the
edge from Logon to Logoff shows that this behavior is gener-
ated by 192.168.4.34 and 192.168.70.38 (Figure 8a, red
box). Selecting the suspicious heatmap cells shows in the graph that
these hosts accessed a wide variety of files within an hour such as
Autorun.inf, scripts.ini, and RemoteInstall (Figure
8b). Sorting the attribute view on Most alerts shows that most of
the selected messages have the smb2.group0.flag set to 8 in-
stead of 0 (Figure 8c). Deselecting the other flag values and sorting
the attributes by relevance shows that these alerts where only gen-
erated by two MAC addresses (Figure 8d). We switch back to the
pixel map and color the messages by MAC address. This shows
that one user runs multiple virtual machines on the same host (Fig-
ure 8e). The interesting part however is that the servers we detected
with sub nets *.*.4.* and *.*.5.* are all originating from the
same machine. Inspecting the alerts that were generated by these
addresses using a table view, we can see that the machine was ac-
cessing rather interesting file names in the network (Figure 8f).

7 DISCUSSION AND LIMITATIONS

The use cases in Section 6 illustrate that there is a strong interplay
between high-level traffic overviews, low-level message views, and
attributes. The tight linking between the different views plays a
key role in understanding how high-level phenomena such as bursts
relate to the presence of low-level alerts in messages. By tagging
message collections through (de)selection, network traffic can be
incrementally enriched with intuitive domain-specific descriptions.

The definition of an outlier greatly depends on the domain
knowledge and the context in which the data is observed. The ac-
cess of a file X does for instance not have to be malicious in general,
but can be dangerous when performed by a certain user. The explo-
ration method should therefore be flexible and expressive enough to
create and inspect new selections without much effort. The time ta-
ble facilitates this by enabling experts to inspect traffic with visual-
izations they are familiar with. Combined with multi-context func-
tionality, outliers can be inspected in various contexts with a single
mouse click. Being able to select and deselect messages based on
their attributes, values, and temporal occurrence in conversations,
while directly gaining feedback on both message and traffic level
provides experts with a powerful exploration mechanism.

Like any methodology, there are limitations. First, the number
of small multiples in the time table does not scale well when con-
sidering attributes with many different values. Although the expert
is enabled to hide values and use scroll bars to limit the number of
displayed values, this only solves the problem partly. Furthermore,
the node-link diagram in the conversation view does not scale when
visualizing large networks. Note however that the analysis of alerts
hardly involves the analysis of all the traffic in the network at once.
Since the analysis of alerts quickly narrows the area of interest, we
decided to choose visualization methods based on their understand-
ability and commonality, rather than their scalabiliy.

Second, the interaction with attributes is limited to the number of
visible scented widgets. Showing too many attributes will break the
interaction whereas too few attributes will increase the risk of miss-
ing potential correlations. Although sorting, filtering, and scrolling
helps to find interesting attributes, creating queries involving many
attributes can become a burden and a textual interface is preferred.

Third, the proposed classifier refinement approach implicitly as-
sumes that the underlying classification model is suitable for semi-
supervised learning. Although the interaction enables experts to
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train the classifier additionally on specific parts of the traffic, there
is no clear boundary between fitting and overfitting the underlying
model. The extent to which an expert can detect a false positive can
greatly influence the classifier’s performance in a good or bad way.

8 CONCLUSIONS AND FUTURE WORK

We presented a novel approach for domain experts to explore large
message collections using automatic generated alerts and interac-
tion as a solid basis. The ability to interactively switch from traffic-
level overviews to message-level details enables experts to inves-
tigate the relationship between high-level traffic phenomena and
low-level message fields, while staying aware of other concepts
such as conversations and sequential patterns. The combination
of attribute-based scented widgets and selection-based relevance
metrics enables experts to search through large attribute collections
and refine classification results in multiple dimensions. Since the
methodology exhibits the structure of time-dependent multivariate
data, it is general and flexible enough to be applied in other do-
mains. We have shown the effectiveness of the approach on real
world and artificial data sets clearly illustrating the complexity net-
work analysts have to deal with.

For future work it is interesting to see how we can enrich our
method by training new classifiers on specific sub parts of the traf-
fic. This would enable experts to interactively test the IDS perfor-
mance for different types of profiles. Developing an intuitive in-
teraction mechanism however is nontrivial. Furthermore, extensive
evaluation is required to study the approach’s real-time capabilities
and effectiveness in different network environments and domains.
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